资源类型

期刊论文 498

会议视频 8

年份

2023 71

2022 60

2021 45

2020 41

2019 29

2018 32

2017 38

2016 18

2015 27

2014 18

2013 14

2012 17

2011 18

2010 8

2009 12

2008 11

2007 15

2006 1

2005 2

2004 2

展开 ︾

关键词

碳中和 4

节能减排 4

可持续发展 3

减灾 2

可再生能源 2

安全 2

温室气体 2

能源 2

5% 法 1

C-Bézier曲面;降阶;边界约束 1

CAE 1

CP);符号间干扰(inter symbol interference, ISI);载波间干扰(inter carrier interference 1

Cu(In 1

GPU;密度峰值;聚类;并行计算 1

Ga)Se2 1

ICI);最大似然估计(maximum likelihood estimation 1

Key technology 1

K波段;高效率;宽带;氮化镓(GaN);功率放大器 1

Laplacian特征映射 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of different acid anions on highly efficient Ce-based catalysts for selective catalytic reduction

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1399-1411 doi: 10.1007/s11705-023-2345-5

摘要: Three kinds of Ce-based catalysts (CePO4, CeVO4, Ce2(SO4)3) were synthesized and used for the selective catalytic reduction (SCR) of NO by NH3. NH3-SCR performances were conducted in the temperature range of 80 to 400 °C. The catalytic efficiencies of the three catalysts are as follow: CePO4 > CeVO4 > Ce2(SO4)3, which is in agreement with their abilities of NH3 adsorption capacities. The highest NO conversion rate of CePO4 could reach about 95%, and the catalyst had more than 90% NO conversion rate between 260 and 320 °C. The effect of PO43–, VO43– and SO42– on NH3-SCR performances of Ce-based catalysts was systematically investigated by the X-ray photoelectron spectroscopy analysis, NH3 temperature programmed desorption, H2 temperature programmed reduction and field emission scanning electron microscopy tests. The key factors that can enhance the SCR are the existence of Ce4+, large NH3 adsorption capacity, high and early H2 consumptions, and suitable microstructures for gas adsorption. Finally, CePO4 and CeVO4 catalysts also exhibited relatively strong tolerance of SO2, and the upward trend about 8% was detected due to the sulfation enhancement by SO2 for Ce2(SO4)3.

关键词: CePO4     CeVO4     Ce2(SO4)3     selective catalytic reduction     NO removal    

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selectivecatalytic reduction of NO with NH

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 594-602 doi: 10.1007/s11705-017-1668-5

摘要: A mild deposition method was used to fabricate Mn-based catalysts on a UiO-66 carrier for the selective catalytic reduction of NO by NH (NH -SCR). The catalyst with 8.5 wt-% MnO loading had the highest catalytic activity for NH -SCR with a wide temperature window (100–290 °C) for 90% NO conversion. Characterization of the prepared MnO /UiO-66 catalysts showed that the catalysts had the crystal structure and porosity of the UiO-66 carrier and that the manganese particles were well-distributed on the surface of the catalyst. X-ray photoelectron spectroscopy analysis showed that there are strong interactions between the MnO and the Zr oxide secondary building units of the UiO-66 which has a positive effect on the catalytic activity. The 8.5 wt-% MnO catalyst maintained excellent activity during a 24-h stability test and exhibited good resistance to SO poisoning.

关键词: metal-organic framework     selective catalytic reduction     manganese oxides     deNOx     SO2 resistance    

Analysis of inventory level under procurement constraints in supply chain

CHANG Guangshu

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 361-363 doi: 10.1007/s11465-007-0063-1

摘要: Because the inventory is one of the major factors that affect the performance of the supply chain system, efficient reduction of an inventory can effectively reduce the cost level of the total supply chain. Therefore, inventory management is an important means to optimize the operation of a supply chain and enhance the competitive advantage. Considering the (, ) policy in an inventory management, this paper establishes a model of the inventory level. Then, the change of the inventory level with and without the procurement constraints is analyzed, and their expectation and variance calculated. Consequently, the order point can be determined accurately to reduce the inventory level and the operation risk.

关键词: supply     efficient reduction     system     expectation     procurement    

Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared

Yali CHEN,Lu XIONG,Weikang WANG,Xing ZHANG,Hanqing YU

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 897-904 doi: 10.1007/s11783-015-0782-1

摘要: Pollution caused by toxic nitrobenzene has been a widespread environmental concern. Selective reduction of nitrobenzene to aniline is beneficial to further efficient and cost-effective biologic treatment. Electrochemical reduction is a promising method and Cu-based catalysts have been found to be an efficient cathode material for this purpose. In this work, Cu catalysts with different morphologies were fabricated on Ti plate using a facile electrodepositon method via tuning the applied voltage. The dendritic nano-structured Cu catalysts obtained at high applied voltages exhibited an excellent efficiency and selectivity toward the reduction of nitrobenzene to aniline. Effects of the working potential and initial nitrobenzene concentration on the selective reduction of nitrobenzene to aniline using the Cu/Ti electrode were investigated. A high rate constant of 0.0251 min and 97.1% aniline selectivity were achieved. The fabricated nano-structured Cu catalysts also exhibited good stability. This work provides a facile way to prepare highly efficient, cost-effective, and stable nano-structured electrocatalysts for pollutant reduction.

关键词: nitrobenzene     nano-structured Cu     electro-reduction     voltage-dependent electrodeposition     high selectivity     high stability    

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1487-1499 doi: 10.1007/s11705-021-2085-3

摘要: Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced CoS/C nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of CoS embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis-mass spectroscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It is found that CoS nanoparticles homogenously dispersed in the in situ formed N, S co-doped porous carbon/graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% of current after continuously running for around 5 h, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active CoS and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

关键词: MOF derivative     graphene     electrocatalyst     oxygen reduction reaction     oxygen evolution reaction     hydrogen evolution reaction    

Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation

Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1124-1135 doi: 10.1007/s11705-020-1923-z

摘要: With the rapid development of industrial, large amounts of different inorganic and organic pollutants are released into the natural environments. The efficient elimination of environmental pollutants, i.e., photocatalytic degradation of persistent organic pollutants into nontoxic organic/inorganic chemicals, solidification or sorption-reduction of heavy metal ions, is crucial to protect the environment. Nanomaterials with large surface area, active sites and abundant functional groups could form strong surface complexes with different kinds of pollutants and thereby could efficiently eliminate the pollutants from the aqueous solutions. In this review, we mainly focused on the recent works about the synthesis of nanomaterials and their applications in the efficient elimination of different organic and inorganic pollutants from wastewater and discussed the interaction mechanism from batch experimental results, the advanced spectroscopy techniques and theoretical calculations. The adsorption and the photocatalytic reduction of organic pollutants and the sorption/reduction of heavy metal ions are generally considered as the main methods to decrease the concentration of pollutants in the natural environment. This review highlights a new way for the real applications of novel nanomaterials in environmental pollution management, especially for the undergraduate students to understand the recent works in the elimination of different kinds of inorganic and organic chemicals in the natural environmental pollution management.

关键词: nanomaterials     sorption-reduction     photocatalytic degradation     organic pollutants     heavy metal ions    

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1142-3

摘要:

• Biochar supported nanoscale zero-valent iron composite (nZVI/BC) was synthesized.

• nZVI/BC quickly and efficiently removed nitrobenzene (NB) in solution.

• NB removal by nZVI/BC involves simultaneous adsorption and reduction mechanism.

• nZVI/BC exhibited better catalytic activity, stability and durability than nZVI.

关键词: Biochar     Nanoscale zero-valent iron     Nitrobenzene     Reduction     Adsorption     Synergistic effec    

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 726-734 doi: 10.1007/s11705-022-2274-8

摘要: Designing advanced and cost-effective electrocatalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH3 production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO2) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH3 yield rate of 425 μg·h−1·mgcat.−1, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N2 reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH3. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst−electrolyte engineering strategy for producing NH3 at a high efficiency and rate.

关键词: nitric oxide reduction reaction     electrcatalysis     ammonia production     phosphorus-doped titania    

Application of an efficient stochastic calculation method on the seismic analysis of an isolated structure

Wei GUO, Zhiwu YU

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 379-384 doi: 10.1007/s11709-012-0180-8

摘要: An isolated structure often possesses distinct non-proportional damping characteristics. However, traditional seismic calculation theory and methods are derived based on the assumption that damping is proportional. Based on this drawback, a new, more efficient stochastic calculation method, an improvement on the pseudo-excitation method, is introduced. This method is then applied to the seismic analysis of an isolated structure. By comparing it with the forced decoupling, matrix inversion and iteration methods, it is shown that the presented method can produce accurate results while increasing the efficiency of the stochastic analysis. Moreover, the calculation process of the seismic response of an isolated structure is convergent. Based on the results of the example presented in this paper, the given method is applicable to the seismic analysis of an isolated structure and can be utilized in practice.

关键词: isolated structure     stochastic response     non-proportional damping     efficient     accurate     pseudo-excitation method    

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1715-z

摘要:

● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress.

关键词: Extracellular Cr(VI) reduction     Electron transfer     Anammox     Hydrazine     Cr(VI) inhibition    

Achieving air pollutant emission reduction targets with minimum abatement costs: An enterprise-level

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1459-6

摘要:

• Quantification of efficiency and fairness of abatement allocation are optimized.

关键词: Pollutant emission reduction allocation     Emission reduction measures     Total abatement cost     Economic efficiency     Abatement space    

中国煤炭清洁高效可持续开发利用的战略思考

“能源领域咨询研究”综合组

《中国工程科学》 2015年 第17卷 第9期   页码 1-5

摘要:

为全面提高煤炭可持续发展能力,实现煤炭开发利用与社会、经济、资源、环境协调发展,2011年中国工程院组织开展“中国煤炭清洁高效可持续开发利用战略研究”重大咨询项目,从煤炭资源、开采、提质、输运、燃烧、发电、多联产、转化、节能、减排的全产业链进行研究。研究论述了煤炭的战略地位与作用,总结分析了煤炭大规模开发利用带来的安全、生态、温室气体排放等一系列严峻问题,提出了我国煤炭清洁高效可持续开发利用战略的思路和目标。明确了我国煤炭“科学开发、全面提质、先进发电、转化升级、输配优化、节能减排、科技创新”的战略举措,为我国研究制订煤炭和能源相关规划和政策提供了科学支撑。

关键词: 资源禀赋;可持续发展;能源安全;科学产能;洁配度;节能减排;战略举措    

Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis

《能源前沿(英文)》 doi: 10.1007/s11708-023-0908-2

摘要: The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction (NO3 RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for NO3 RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.

关键词: electrochemical ammonia synthesis     nitrogen     nitrate     nitrogen reduction reaction (NRR) to ammonia     nitrate reduction reaction (NO–3 RR)    

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 270-281 doi: 10.1007/s11709-014-0265-7

摘要: Many researches have been carried out to study the fresh and hardened properties of concrete containing crumb rubber as replacement to fine aggregate by volume, yet there is no specific guideline has been developed on the mix design of the rubbercrete. The experimental program, which has been developed and reported in this paper, is designed and executed to provide such mix design guidelines. A total of 45 concrete mixes with three different water to cement ratio (0.41, 0.57 and 0.68) were cast and tested for fresh and mechanical properties of rubbercrete such as slump, air content, unit weight, compressive strength, flexural strength, splitting tensile strength and modulus of elasticity. Influence of mix design parameters such as percentage of crumb rubber replacement, cement content, water content, fine aggregate content, and coarse aggregate content were investigated. Three levels of slump value (for conventional concrete mixes) has been selected; low, medium and high slump. In each slump level, water content was kept constant. Equations for the reduction factors (RFs) for compressive strength, flexural strength, splitting tensile strength and modulus of elasticity have been developed. These RFs can be used to design rubbercrete mixes based on the conventional mix (0% crumb rubber content)

关键词: crumb rubber     recycled tire     mix design     reduction factor     strength     modulus elasticity    

A review of Pt-based electrocatalysts for oxygen reduction reaction

Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 268-285 doi: 10.1007/s11708-017-0466-6

摘要: Development of active and durable electrocatalyst for oxygen reduction reaction (ORR) remains one challenge for the polymer electrolyte membrane fuel cell (PEMFC) technology. Pt-based nanomaterials show the greatest promise as electrocatalyst for this reaction among all current catalytic structures. This review focuses on Pt-based ORR catalyst material development and covers the past achievements, current research status and perspectives in this research field. In particular, several important categories of Pt-based catalytic structures and the research advances are summarized. Key factors affecting the catalyst activity and durability are discussed. An outlook of future research direction of ORR catalyst research is provided.

关键词: oxygen reduction reaction (ORR)     electrocatalysis     platinum catalyst     activity     durability    

标题 作者 时间 类型 操作

Effect of different acid anions on highly efficient Ce-based catalysts for selective catalytic reduction

期刊论文

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selectivecatalytic reduction of NO with NH

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

期刊论文

Analysis of inventory level under procurement constraints in supply chain

CHANG Guangshu

期刊论文

Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared

Yali CHEN,Lu XIONG,Weikang WANG,Xing ZHANG,Hanqing YU

期刊论文

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient

期刊论文

Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation

Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang

期刊论文

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

期刊论文

Electrocatalytic reduction of NO to NH in ionic liquids by P-doped TiO nanotubes

期刊论文

Application of an efficient stochastic calculation method on the seismic analysis of an isolated structure

Wei GUO, Zhiwu YU

期刊论文

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

期刊论文

Achieving air pollutant emission reduction targets with minimum abatement costs: An enterprise-level

期刊论文

中国煤炭清洁高效可持续开发利用的战略思考

“能源领域咨询研究”综合组

期刊论文

Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis

期刊论文

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

期刊论文

A review of Pt-based electrocatalysts for oxygen reduction reaction

Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG

期刊论文